SIMULACIÓN Y PROPUESTA DE MEJORAS DEL SISTEMA PRODUCTIVO DE LA EMPRESA C.I. ANTILLANA S.A.

GUSTAVO ADOLFO ORTIZ PIEDRAHITA
JOSE MANUEL SOLANA GARZON

CORPORACIÓN UNIVERSITARIA TECNOLÓGICA DE BOLÍVAR
FACULTAD DE INGENIERÍA
PROGRAMA DE INGENIERIA INDUSTRIAL
CARTAGENA
2003
SIMULACIÓN Y PROPUESTA DE MEJORAS DEL SISTEMA PRODUCTIVO DE
LA EMPRESA C.I. ANTILLANA S.A.

GUSTAVO ADOLFO ORTIZ PIEDRAHITA
JOSE MANUEL SOLANA GARZON

Monografía para obtener el título de Ingeniero Industrial

CORPORACIÓN UNIVERSITARIA TECNOLÓGICA DE BOLÍVAR
FACULTAD DE INGENIERÍA
PROGRAMA DE INGENIERÍA INDUSTRIAL
CARTAGENA
2003
ARTÍCULO 105

La Corporación Universitaria Tecnológica de Bolívar, se reserva el derecho de propiedad intelectual de todos los trabajos de grado aprobados, y no pueden ser explotados comercialmente sin su autorización.
CONTENIDO

INTRODUCCIÓN .. 1

1. PLANEACIÓN DE LA SIMULACIÓN Y DEFINICIÓN DEL SISTEMA .. 4
 1.1 DESCRIPCIÓN DEL PROCESO ... 4
 1.2 DEFINICIÓN DEL SISTEMA ... 5
 1.3 PROCESO .. 6
 1.4 OBJETIVOS DE LA SIMULACIÓN .. 6
 1.5 LIMITACIONES DEL ESTUDIO ... 7
 1.6 ESPECIFICACIONES .. 7
 1.7 INFORMACIÓN REQUERIDA .. 8

2. CONSTRUCCIÓN DEL MODELO ... 21

3. EJECUCIÓN DE EXPERIMENTOS Y ANÁLISIS DE RESULTADOS .. 26
 3.1 EJECUCIÓN DE EXPERIMENTOS ... 26
 3.2 ANÁLISIS DE RESULTADOS .. 26

4. IDENTIFICACIÓN DE LA CAUSA RAÍZ Y PROPUESTAS DE MEJORAS 42

5. CONCLUSIONES ... 46

BIBLIOGRAFÍA ... 50

ANEXOS ... 51
<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agrupación de Tiempo de las Operaciones</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Agrupación de Tiempo de los Transportes</td>
<td>17</td>
</tr>
</tbody>
</table>
LISTA DE GRAFICAS

<table>
<thead>
<tr>
<th>Título</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Utilización de locaciones</td>
<td>27</td>
</tr>
<tr>
<td>3.2 Estado de Capacidad Múltiple de las locaciones</td>
<td>28</td>
</tr>
<tr>
<td>3.3 Estado de las Entidades</td>
<td>30</td>
</tr>
<tr>
<td>3.4 Estado de los Recursos</td>
<td>31</td>
</tr>
<tr>
<td>3.5 Wip Almacenamiento temporal</td>
<td>32</td>
</tr>
<tr>
<td>3.6 Wip Clasificación</td>
<td>33</td>
</tr>
<tr>
<td>3.7 Wip Pesaje</td>
<td>34</td>
</tr>
<tr>
<td>3.8 Wip Empaque</td>
<td>35</td>
</tr>
<tr>
<td>3.9 Wip Congelación</td>
<td>36</td>
</tr>
<tr>
<td>3.10 Wip Total</td>
<td>37</td>
</tr>
<tr>
<td>3.11 TH Clasificación y Pesaje</td>
<td>38</td>
</tr>
<tr>
<td>3.12 TH Congelación y Total</td>
<td>40</td>
</tr>
<tr>
<td>3.13 Tiempo de Ciclo</td>
<td>41</td>
</tr>
</tbody>
</table>
LISTA DE ANEXOS

3. Dispositivo de selección para clasificación de Camarón 52
4. Validación de los datos y análisis estadístico a través de Stat::Fit 53
GLOSARIO

Contenedor: Trailer donde es transportado el camarón, ya sea del cultivo o para el despacho hacia los clientes.

Pila de Tinas: Entidad compuesta por dos tinas, una grande y una pequeña con capacidad de 450 kilogramos la primera y 306 kilogramos la segunda.

Camarón Entero: Camarón que no viene degollado y que no ha sufrido ninguna mutilación o maltrato.

Camarón Cola: Camarón que se encuentra mutilado o maltratado.

Colador: Recipiente plástico con orificios que tiene capacidad de almacenar 2000 gramos de camarón aproximadamente y que se utiliza para trasladar el camarón de la zona de clasificación hasta la zona de empaque. Para la simulación equivale a la unidad básica en la sección de clasificación y la sección de inspección y pesaje, y se convierte en plegadiza en la zona de embalaje.
Servilletas: Bolsa plástica donde se empacan los camarones inicialmente para después colocarlo en las plegadizas.

Plegadiza: Caja de cartón que tiene capacidad para almacenar 2000 gramos de camarón y conforma la unidad mínima de venta de camarón. En la simulación se convierte en la unidad básica después de la zona de empaque y pasa a componer el Master.

Bandeja: Lámina de metal que se utiliza para colocar las 9 plegadizas para estas que sean congeladas.

Amerio: Nevera o congelador compuesto por planchas donde se colocan las plegadizas con camarón para que se congelen en un determinado periodo de tiempo.

Master: Caja de cartón que se utiliza para embalar las plegadizas para poder ser despachadas. En la simulación es la unidad de salida del sistema.
OBJETIVO GENERAL

Evaluar el sistema productivo de la C.I. Antillana S.A., a través de la Simulación de Procesos con el fin de identificar las restricciones que presenta este para proponer mejoras que contribuya a la organización al aprovechamiento de sus recursos disponibles para hacerla más productiva y competitiva en el sector camaronero.

METODOLOGÍA

El tipo de investigación que manejamos fue descriptiva ya que estamos observando cual es la situación actual que presenta el sistema productivo de la empresa.
RESULTADOS

El comportamiento de los inventarios en proceso es dependiente de dos factores: uno es la llegada de los contenedores y el otro el cuello de botella que se presenta en la parte de congelación para amortizar el impacto de esta variación la empresa usa grandes almacenamientos temporales, y esto influye aumentando el tiempo de ciclo del proceso y ocultando el desbalanceamiento entre las operaciones que se realiza.

Se identificó que la tasa de salida de producto en el sistema es dependiente del comportamiento del cuello de botella que en este caso es congelación, esto quiere decir que los esfuerzos que haga la empresa por mejorar la productividad del sistema deben ir enfocados a mejorar las condiciones de trabajo en la parte de congelación. Como la organización muestra restricciones económicas para la implementación de equipos que disminuya el tiempo de operación del cuello de botella se propone aumentar la capacidad de la estación de carga de los Amerios con el fin de mantener así cuello de botella ocupado.

Se encontraron fallas en cuanto al control y pesaje que se realiza a los coladores. Dicha problemática se basa en que la tasa de inspección es mucho menor que la tasa de producción de la zona de clasificación. Por esto en la organización se decidía desocupar el buffer enviando material sin inspeccionar a la siguiente estación. Para mejorar esto se propone la implementación de un sistema a prueba
de errores que elimine la inspección. De todas formas se debe realizar un pesaje de los coladores, este pesaje no se puede hacer 100%, por tal motivo se propone a la empresa desarrollar un sistema de control de calidad con respecto al peso de los coladores.
INTRODUCCIÓN

C.I. Antillana S.A. es una empresa dedicada al procesamiento de Camarón de Mar y de cultivo en la ciudad de Cartagena. La empresa se caracteriza porque sus procesos son en su mayoría manuales, esto hace al recurso humano muy importante en la organización. C.I. Antillana S.A. es consciente de esto, y se ha preocupado por la capacitación y motivación de su personal, llegando a tener a sus clasificadoras como una ventaja competitiva dentro del sector.

C.I. Antillana S.A. se ha visto afectada por apertura de los mercados y la situación social y económica que vive el país. Por estos motivos la organización se ha preocupado por su posición en el mercado y quiere asegurar su permanencia y crecimiento. Esta problemática se ha querido enfrentar desde dos puntos de vista. El primero hace referencia a la naturaleza de su operación la cual se define como un outsourcing, que C.I. Antillana S.A. realiza a las empresas cultivadoras de camarón como son Agrosoledad, Proacuícolas y Aquacultivos, entre otros, para la clasificación del camarón. La empresa es consciente que debe hacer su proceso atractivo a estos cultivadores de camarón, dejándolos satisfechos en cuanto a tiempos de proceso y costos de los mismos.
En base a esta problemática, nace el objetivo de la investigación, el cual es evaluar el sistema productivo de la C.I. Antillana S.A., a través de la Simulación de Procesos con el fin de identificar las restricciones que presenta este para proponer mejoras que contribuya a la organización al aprovechamiento de sus recursos disponibles para hacerla más productiva y competitiva en el sector camaronero.

Para lograr este objetivo, la investigación se ha dividido en cuatro partes. Una primera parte donde se planifica el trabajo de investigación y se define el sistema. Aquí se precisan los objetivos, las limitaciones, las especificaciones y la planeación del tiempo en que se va a desarrollar la Simulación. Adicional a esto, también se definirá la información que se necesita para la construcción del modelo como son las locaciones, entidades, recursos, tiempos de proceso, variables e indicadores de desempeño que permitan describir el comporta sistema y la posterior comparación del mismo.

La segunda parte hace referencia a la construcción del modelo, donde se comentarán las situaciones que se presentaron al crear el modelo y los pasos que se realizaron para la elaboración del mismo.

La tercera parte será de la ejecución y análisis del modelo donde se definirán las características del tipo de Simulación que se presenta. Además, se analizaran los
datos que arrojen las corridas de Simulación del modelo con el fin de determinar cuales son las restricciones de la empresa.

La cuarta parte será la Identificación de la causa raíz y propuesta de mejoramiento que consistirá en el ofrecimiento de alternativas que solucionen las problemáticas que se presentan en el sistema productivo.
1. PLANEACION DE LA SIMULACION Y DEFINICION DEL SISTEMA

1.1 DESCRIPCION DEL PROCESO

El proceso inicia con la llegada de los contenedores que traen el camarón de los cultivos. Después se procede a la descarga de las pilas de tinas utilizando un montacargas, donde un operario ata con una cuerda la base de la tina y después la ata a las muelas del montacargas y este procede a halar la pila de tinas hasta el borde del contenedor donde la toma y la descarga colocándola en la zona de almacenamiento provisional. Lo mismo hace con las demás tinas hasta descargar 10 pilas de tinas. Después que ha descargado el contenedor, procede a pasar la pila de tinas a la zona de descongelación donde destapa las tinas y se le agrega agua para retirar el hielo del camarón. Después es recogido el camarón en canastillas y pasado a la tina para realizar el baño con bisulfito y después de un tiempo estimado se pasa dichas canastillas a la báscula para verificar la cantidad de camarón que llega a la planta. Después es pasado a la zona de clasificación donde es repartido en las mesas para ser clasificado en entero y cola, para después tomar el camarón entero y clasificarlo por talla, este camarón es depositado en coladores. Posterior a este proceso se pasa a la mesa de inspección donde se verifica la talla y se realiza el pesaje de los coladores que aproximadamente pesan 2000 gramos. Hay que tener en cuenta que cada talla tiene un número específico de camarones que llenan la canasta y hace que esta pese 2000 gramos.
Se pasa a la zona de empacado donde se deposita el camarón en servilletas para después colocarlo en las plegadizas y después colocarlo en las bandejas que tienen capacidad para nueve (9) plegadizas.

Después de haberse colocado las plegadizas en bandejas, se pasa a guardar estas en el amerio que tiene una capacidad de 75 bandejas. Aquí demora aproximadamente 4 horas y posterior a esto se saca del amerio por la parte trasera y se desmolda las plegadizas de las bandejas para después armar los master de 10 plegadizas cada uno. Empacado los master se procede a zunchar y etiquetar estos para guardarlos en el cuarto frío que conserva el camarón para después ser despachado en contenedores.

1.2 DEFINICION DEL PROBLEMA
Al simular el sistema productivo de C.I. Antillana S.A., se busca identificar como se encuentra el proceso actual de la empresa, para determinar si existen cuellos de botella producidos por almacenamiento de provisional de productos en proceso y por falta de capacidad de ciertas zonas del proceso. Después de haber identificado los factores que afectan dicho proceso, determinar cuales son sus causas para poder atacarlas creando alternativas que mejoren el desempeño de la planta. Pero este estudio va acompañado con indicadores que midan el
desempeño del sistema para evaluar si en realidad la organización está siendo competitiva en el sector.

Pero las alternativas de mejoras que se desarrollen serán evaluadas a través de la Simulación del Proceso para observar las repercusiones que se tendrán por la implementación de estas.

1.3 PROCESO

El proceso que se simulará es el referente al procesamiento del camarón de cultivo. Este es traído de fincas acuícola en tinas con capacidad de 756 kilogramos aproximadamente.

1.4 OBJETIVOS DE LA SIMULACIÓN

✔ Simular el sistema productivo de la C.I. Antillana utilizando el Software PROMODEL® con el fin de obtener información resultante de los indicadores que se han creado.

✔ Construir indicadores de gestión que a través de la Simulación generen datos característicos del proceso con el fin de medir el desempeño del sistema productivo.
✓ Determina las restricciones del sistema productivo utilizando los resultados obtenidos de la simulación con el objeto de analizar cuales son los factores que están influyendo para que existan dichas restricciones.

✓ Analizar los factores que influyen a que existan restricciones en el sistema productivo a través de técnicas de Ingeniería Industrial como son la evaporación de nubes y el diagrama de Ishikawa con el fin de emitir conclusiones sobre el desempeño de la planta y como afectan los factores bajo estudio a la productividad de la empresa.

✓ Crear estrategias para mejorar el sistema productivo a través de las buenas técnicas de manufactura con el fin de aprovechar al máximo los recursos de la organización e incrementar la eficiencia, eficacia y la productividad de la empresa.

✓ Simular las propuestas realizadas apoyados en el software para determinar el impacto que tienen en el desempeño del sistema.
1.5 LIMITACIONES DEL ESTUDIO

Información: la investigación se basa en un estudio de métodos que fue realizado en forma independiente a la Simulación. Esto conlleva a la ausencia de datos requeridos para una Simulación que no se incluye en un estudio de métodos.

Equipo: los equipos requeridos para la Simulación estarán disponible los últimos 25 días antes de vencer el plazo para la entrega del trabajo de investigación y en las instalaciones de la universidad, por tanto se esta sujetos a los horarios establecidos los días hábiles y algunos permisos.

1.6 ESPECIFICACIONES

Alcance: El estudio que se realizó en C.I. Antillana S.A. utilizando la Simulación de Procesos tiene comprendido todo el sistema de producción de la empresa desde la llegada de los contenedores con camarón hasta el despacho de estos. Pero después de realizar la Simulación general, se procederá a simular las restricciones del sistema.
Nivel de Detalle: Para el modelo del sistema productivo de C.I. Antillana S.A., se detallará cada una de las actividades básicas teniendo en cuenta las tareas realizadas por los operarios de manera general. Después con los modelos de las restricciones del sistema productivo, se detallará cada una de las tareas que se realizan en estos puntos del proceso.

Grado de Exactitud: El grado de exactitud para este proyecto es alto ya que el sistema se caracteriza por tener actividades repetitivas, en donde tiempos de operaciones que no sean exactos pueden generar errores sistemáticos que al producirse muchas veces le quitaran validez al modelo.

1.7 INFORMACION REQUERIDA

Distribución de la Planta: Por las características que se dan en cada una, para la Simulación, la planta puede distribuirse en 3 zonas.

Zona al Aire Libre: En ésta zona se recibe el camarón se inspecciona y se pesa. Para cuestión del estudio, esta zona se dividió en 2, la sub-zona de descarga, en la cual llega el contenedor y es descargado por el montacargas, y la sub-zona de pesaje, donde se descargan las tinas que traen los contenedores y se pesan, ésta sub-zona a diferencia de la primera se encuentra protegida del sol.
Zona Interior de la Planta: Esta zona se encuentra en el interior de la planta, se caracteriza por restricciones en cuanto a higiene y salubridad, para el estudio, ésta zona se dividió en tres partes, una sub-zona de clasificación, que está compuesta por mesas en las que mujeres se encargan de clasificar el camarón, otra sub-zona de control y pesaje, y una sub-zona de empaque, donde se arman las plegadizas y las bandejas.

Zona de Congelación: En esta zona se congelen las plegadizas y son empacadas en Masters. Aquí se somete el camarón a bajas temperaturas, por esto, ésta zona es de temperaturas bajas que exigen protección para los operario. Para el estudio se identifican 2 sub-zonas, en la primera se encuentran los Amerios, donde el camarón se congela, la segunda es donde el camarón se empaca en los Masters.

Zona de Cuartos Fríos: En ésta zona se almacena los Master esperando para ser despachados, en esta zona no hay ninguna transformación, por criterio de los analistas, se dejo fuera del estudio por tratarse de una problemática concerniente al manejo de inventarios.

Centros de Trabajo: Las zonas de trabajo para éste proceso de acuerdo a las actividades que se presentan en el proceso los dividimos de la siguiente manera:
Zona de descarga: aquí se descarga el contenedor y se llevan las tinas a un almacenamiento temporal.

Zona de control y pesaje de canastas: aquí se descargan las tinas, se bañan en bisulfito y se pesan, para luego ser cargadas es un carrito de manos y se llevadas al interior de la planta.

Zona de clasificación: ésta zona está compuesta por mesas paralelas donde llegan las canastas y son clasificados los camarones que se colocan en canastas agrupándolos según su estado (entero y cola) y su talla.

Zona de Control y pesaje de coladores: está compuesta por mesas ubicadas al final de las mesas de clasificación de forma perpendicular a estas. En esta zona se inspecciona la clasificación y que los coladores tengan el peso adecuado.
Zona de empaquetado: a ésta zona llega los coladores ya inspeccionados y son empacados en plegadizas para luego ser agrupadas en bandejas de acuerdo a su talla y ser metidos en los Amerios.

Zona de Masterizado: empieza por descargar las bandejas de los Amerios, luego se toman las plegadizas y se empacan en Master, para ser almacenadas en el cuarto frió.
Tiempos de Proceso de cada Centro de Trabajo: Los tiempos utilizados para la simulación fueron suministrados por un estudio de métodos y tiempo realizado recientemente en la plata, estos tiempos fueron muy detallados, lo que dificultaba la simulación, pues para muchos casos se debían crear nuevas locaciones, nuevos recursos y nuevas entidades que en realidad no agregaban valor al modelo ya definido, por tal motivo, muchos de los tiempos fueron agrupados en actividades. Cada uno de las actividades con sus respectivos tiempos fueron analizados por medio del Stat::Fit, obteniéndose una distribución de probabilidad que logra simular la variabilidad de la operación. Estas distribuciones fueron agrupadas en diferentes actividades como se explicó anteriormente, pero estas fueron insertadas en el modelo de tal forma que se lograra la independencia de las distribuciones con el fin de poder hacer cambios o mejoras si estos se dan. Esto se explica mejor en el siguiente ejemplo.

En los contenedores, cuando se encuentran en el parqueadero, en el mismo punto realizan varias actividades como son las que un operario coloca la cuerda, después el montacargas hala la tina, después el operario suelta la cuerda, el montacargas baja la pila de tinas y el operario le quita el zuncho y el tapón a las tinas.

1 NEIRA, Diana, Cinquegrona, Sabrina. CALCULO DEL NIVEL DE EFICIENCIA PARA GENERAR PROPUESTAS DE MEJORAS EN LA EMPRESA C.I. ANTILLANA S.A. Trabajo de Grado, CUTB
A continuación se muestran las operaciones con sus respectivas distribuciones de probabilidad y en que actividades fueron agrupadas. Ver Tablas 1.1 y 1.2.
<table>
<thead>
<tr>
<th>OPERACIÓN</th>
<th>ACTIVIDADES</th>
<th>TIEMPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenedores en el Microbuffer de Descongelación</td>
<td>Colocar la cuerda alrededor de la tina y del montacargas</td>
<td>Log-Logistic(6,4.04,1.39)</td>
</tr>
<tr>
<td></td>
<td>Halar la pila de tinas</td>
<td>Triangular(10,14,13.7)</td>
</tr>
<tr>
<td></td>
<td>Soltar la cuerda del montacargas y de la tina</td>
<td>Triangular(10,13.2,12.9)</td>
</tr>
<tr>
<td></td>
<td>Descargar la pila de tinas del camión</td>
<td>Beta(10,14.3,0.776,0.746)</td>
</tr>
<tr>
<td></td>
<td>Quitar el zuncho</td>
<td>Erlang(3,17,0.0792)</td>
</tr>
<tr>
<td></td>
<td>Quitar el tapón de la tina</td>
<td>Beta(4,5.98,1.33,0.813)</td>
</tr>
<tr>
<td>Descongelar la tina</td>
<td>Descongelar la tina</td>
<td>Exponential (20,1.72)</td>
</tr>
<tr>
<td>Baño de las Camarones con Bisulfito</td>
<td>Sumergir la canasta en la tina con Bisulfito</td>
<td>Log-Logistic(6,4.04,1.39)</td>
</tr>
<tr>
<td></td>
<td>Bañar con Bisulfito</td>
<td>Triangular(10,14,13.7)</td>
</tr>
<tr>
<td></td>
<td>Sacar la canasta de la tina con bisulfito</td>
<td>Triangular(10,13.2,12.9)</td>
</tr>
<tr>
<td></td>
<td>Escurrir la canasta</td>
<td>Beta(10,14.3,0.776,0.746)</td>
</tr>
<tr>
<td>Pesaje</td>
<td>Pesar</td>
<td>Lognormal(3,-0.303,0.353)</td>
</tr>
<tr>
<td>Distribución de Canastas con Camarón en la Zona de Clasificación</td>
<td>Anotar el peso y el número de canastas</td>
<td>Erlang(3,18,0.0843)</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>Llevar el camarón a la mesa de clasificación</td>
<td>Pearson5(5,7.72,13.7)</td>
<td></td>
</tr>
<tr>
<td>Clasificación</td>
<td>Clasificar el camarón entero Agrosoledad</td>
<td>Log-Logistic(127,1.57,12)</td>
</tr>
<tr>
<td>Pesaje de los Coladores con Camarón</td>
<td>Inspeccionar la calidad del camarón</td>
<td>Erlang(12,2,0.53)</td>
</tr>
<tr>
<td></td>
<td>Inspeccionar la talla del camarón</td>
<td>Beta(19,28.2,0.905,1.01)</td>
</tr>
<tr>
<td></td>
<td>Pesar el colador</td>
<td>Log-Logistic(5,4.69,1.87)</td>
</tr>
<tr>
<td></td>
<td>Anotar el colador a la clasificadora</td>
<td>Beta(4,6.51,1.33,1.17)</td>
</tr>
<tr>
<td>Empaque</td>
<td>Armar la plegadiza</td>
<td>Triangular(4,6.15,5.43)</td>
</tr>
<tr>
<td></td>
<td>Vaciare el camarón en la servilleta</td>
<td>Weibull(4,2.16,1.07)</td>
</tr>
<tr>
<td></td>
<td>Empacar los camarones en la plegadiza</td>
<td>Weibull(9,1.96,2.37)</td>
</tr>
<tr>
<td>Organización de las Bandejas</td>
<td>Organizar las plegadizas por talla</td>
<td>Weibull(0,9.62,1.28)</td>
</tr>
<tr>
<td>Congelación de los Camarones que contienen las Plegadizas.</td>
<td>Cerrar el amerio para la congelación</td>
<td>Pearson6(49,7.34e+03,1.16,1.17e+03)</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td>Congelación en el Amerio</td>
<td>14400 segundos</td>
</tr>
<tr>
<td></td>
<td>Abrir las puertas del amerio del lado del prefrió</td>
<td>Weibull(10,2.23,2.1)</td>
</tr>
<tr>
<td></td>
<td>Abrir las puertas del amerio del empaque</td>
<td>Log-Logistic(91,2.93,5.8)</td>
</tr>
<tr>
<td></td>
<td>Empujar las bandejas contenidas en una placa</td>
<td>Weibull(6,2.16,1.07)</td>
</tr>
<tr>
<td>Almacenamiento Temporal</td>
<td>Remover las 9 plegadizas de la bandeja</td>
<td>Triangular(4,7.08,6.02)</td>
</tr>
<tr>
<td>Plegadizas en el Banco de Organizado</td>
<td>Etiquetar plegadiza</td>
<td>Weibull(1,4.66,0.473)</td>
</tr>
<tr>
<td>Masterizado</td>
<td>Empacar 10 plegadizas en el Master Proa y Agro</td>
<td>Erlang(19,2,2.03)</td>
</tr>
<tr>
<td></td>
<td>Zunchar el Master de 20 Kg (3 zunchos)</td>
<td>Uniform(40,54)</td>
</tr>
<tr>
<td></td>
<td>Agrosoledad</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 2. Agrupación de tiempos de los transportes

<table>
<thead>
<tr>
<th>TRANSPORTES</th>
<th>ACTIVIDADES</th>
<th>TIEMPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movimiento con el recurso montacargas</td>
<td>Llevar las tinas a la zona de espera</td>
<td>Log-Logistic(12,1.64,0.827)</td>
</tr>
<tr>
<td>Movimientos con el Recurso Montacarga</td>
<td>Llevar las tinas a zona de descongelación</td>
<td>Weibull(16,1.34,2.86)</td>
</tr>
<tr>
<td>Movimientos con el Recurso Montacarga</td>
<td>Separar las tinas</td>
<td>Exponential(20,1.72)</td>
</tr>
<tr>
<td>Movimientos simulados dentro de la Zona de Descongelación</td>
<td>Sacar la canasta de la tina</td>
<td>Lognormal(0,0.138,0.113)</td>
</tr>
<tr>
<td>Movimientos simulados dentro de la Zona de Descongelación</td>
<td>Colocar la canasta en el borde de la tina</td>
<td>Beta(0,1.45,6.62,1.71)</td>
</tr>
<tr>
<td>Movimientos con el Recurso Cargador a la Tina</td>
<td>Llevar la canasta a la tina con bisulfito</td>
<td>Pearson5(1,12,10.4)</td>
</tr>
<tr>
<td>Movimientos con el Recurso Cargador a la Báscula</td>
<td>Llevar la canasta hasta la Báscula</td>
<td>Gamma(1,13.8,0.0921)</td>
</tr>
<tr>
<td>Acción</td>
<td>Descripción</td>
<td>Distribución</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Mover las Canastas con el Recurso Cargador a la Locación de Carga</td>
<td>Montar la canasta en carro de manos</td>
<td>Beta(2,3.91,2.79,1.67)</td>
</tr>
<tr>
<td>Transportar las Canastas al Interior de la Planta con el Recurso Carretilla</td>
<td>Llevar el carrito de los coladores hasta el interior de la planta</td>
<td>Weibull(25,2.17,4.45)</td>
</tr>
<tr>
<td>Repartir las Canastas en las Mesas con el Recurso Carretilla</td>
<td>Llevar el carro de manos hasta el último punto de repartición de las canastillas</td>
<td>Weibull(28,1.39,4.33)</td>
</tr>
<tr>
<td>Llevar los Coladores a la Mesa de Empaque con el Carrito</td>
<td>Colocar los dos coladores sobre el carrito de manos</td>
<td>Erlang(1,10,0.123)</td>
</tr>
<tr>
<td></td>
<td>Llevar el colador a la mesa de empaque</td>
<td>Beta(18,26.6,0.937,1.15)</td>
</tr>
<tr>
<td></td>
<td>Bajar los dos coladores del carrito de manos</td>
<td>Beta(1,3.34,4.39,1.69)</td>
</tr>
<tr>
<td>Descargar el amerio y Sacar la bandeja del amerio</td>
<td>Sacar la bandeja del amerio</td>
<td>Log-Logistic(1,5.72,0.674)</td>
</tr>
<tr>
<td>Descripción</td>
<td>Acción</td>
<td>Distribución</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Colocar las bandejas en el Almacén Temporal</td>
<td>Llevar la bandeja al banco</td>
<td>Weibull(3,2.58,1.29)</td>
</tr>
<tr>
<td>Colocar el Master en la Zona de Embalaje</td>
<td>Llevar el Master hasta la zona de embalaje</td>
<td>Weibull(2,1.71,0.888)</td>
</tr>
<tr>
<td>Colocar el Master en la Zona de Almacenamiento Provisional</td>
<td>Llevar el Master a zona de almacenamiento provisional</td>
<td>Pearson5(5,3.79,4.41)</td>
</tr>
</tbody>
</table>
Productos o subproductos: En el proceso se obtienen Masters, estos se dan según las tallas de los camarones, las tallas utilizadas son 4, por ésta razón, al final del modelo deben salir 4 tipos de diferentes de Masters. Otro producto son las colas, las cuales salen del proceso en la parte de clasificación, para al terminar el empaque de enteros, ser clasificados y empacados en un proceso totalmente independiente al de clasificación del entero. Por estos motivos las colas salen del modelo de simulación al final del proceso de clasificación y se deja el análisis del proceso de clasificación y empaque de colas como objeto de otro estudio. Cabe anotar que se proyecta la necesidad de crear entidades temporales, éstas se irán creando a media que el modelo de simulación lo requiera.

Recursos Requeridos: Los recursos que para el modelo se necesita son los siguientes. Generalmente estos recursos se utilizan para el transporte de las entidades. Para el caso de los operarios que realizan sus labores en los centros de trabajo, asumimos que están incluidos en cada una de las operaciones que se realizan en estos.

<table>
<thead>
<tr>
<th>RECURSOS</th>
<th>CANTIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montacargas</td>
<td>1</td>
</tr>
<tr>
<td>Cargador</td>
<td>2</td>
</tr>
</tbody>
</table>
Que se desea medir: Con la Simulación lo que se desea medir es el grado de aprovechamiento de la capacidad de las actividades que se realizan en el proceso con el fin de determinar si se están aprovechando al máximo con el fin de maximizar los beneficios.

Medidas de Desempeño: Los Indicadores que hemos definido para el modelo de Simulación son los siguientes:

1. WIP (Trabajo en Proceso): este indicador nos medirá en un determinado momento que cantidad de materias se encontrarán en la locación. Este indicador se aplicará para todas las locaciones del sistema.

2. TC (Tiempo de Ciclo): nos mostrará el tiempo promedio que demora las entidades en pasar por el sistema. Los Tiempos de Ciclo que crearemos son
para todo el sistema, para la zona de pesaje y para la zona de empaque hasta la salida de la zona de congelación.

3. TH (Throughput): este indicador permitirá conocer cuantas entidades salen por unidad de tiempo. Los Throughput que aplicaremos será para todo el sistema, para la zona de pesaje y para la zona de empaque hasta la salida de congelación.

Tiempo de Simulación: el tiempo de Simulación del modelo será dependiente de la cantidad de entradas que se le asigne a este. Hay que tener en cuenta que como es terminal, este culmina cuando se procesa el último kilogramo de Camarón.

Variabilidad de Proceso: la variabilidad del proceso estará determinada por las distribuciones de probabilidad que se han encontrado después de analizar cada uno de los conjuntos de datos que presentan cada actividad en el proceso.
2. CONSTRUCCION DEL MODELO

La construcción del modelo empezó en papel, el objetivo de ésta etapa era determinar los elementos que constituirían el modelo de simulación, con el fin de utilizar software de la manera más optima posible, es decir, no sentarse frente a un programa de simulación a generar lo que el modelo “pida”, se trata de que, ya conociendo la estructura de lo que queremos simular y como incluirlo en el modelo, pues sería más rápida la construcción del mismo. De igual forma, la construcción del modelo en el papel fue fundamental para identificar las necesidades de información que se darían durante la elaboración del modelo apoyados en el software de forma mucho más específica.

El modelo fue construido de forma progresiva siguiendo el flujo del proceso, es decir, se empezó por la construcción de la zona de recepción y se fueron añadiendo los diferentes puestos de trabajo según se van dando en el proceso. Los puestos de trabajo que se iban agregando al modelo ya habían sido planificados en el papel, no obstante, en ocasiones se requería de la generación de elementos (como entidades y zonas de almacenamiento intermedio) que no fueron planificados y que el modelo exigía para su correcta corrida, y fuera haciéndolo conforme a la realidad del proceso. Es importante anotar en este punto que a medida que se añadían locaciones y nuevos elementos al modelo se hacían corrida parciales, las cuales garantizaban una
rápida identificación de errores en la simulación, ya que al darse uno de estos se sabía que correspondía a la última locación agregada al sistema.

Paralela a la construcción del modelo, se elaboraban pequeños modelos que servían de apoyo al modelo principal para la realización de cambios significativos, esto se utilizaba en la gran mayoría de los casos en que una zona ya estaba agregada al modelo y se requerían cambios para ceñir el modelo a la realidad. Durante una corrección se quería evitar hacer cambios innecesarios en el modelo principal o de eliminar elementos que pudieran ser vitales para el modelo, por esto se hacían pequeños modelos en los que se simulaba la parte a corregir, para hacer las correcciones solo en los elementos que mostraba el modelo piloto y así garantizar el no eliminar y/o colocar elementos que pudieran ocasionar errores para la simulación.

El modelo resultante consta de muchas locaciones más a las que realmente se presentan en el proceso. Estas locaciones al igual que muchas entidades hacen parte de la simulación y se incluyen para obtener efectos que asemejen al modelo que se desea simular. A continuación se resumen las Locaciones, Entidades, Variables, Recursos y atributos que se utilizaron para la construcción del modelo.
<table>
<thead>
<tr>
<th>Locaciones</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrada</td>
<td>Cola donde llegan los contenedores</td>
</tr>
<tr>
<td>Contenedores</td>
<td>Contenedores esperan para ser descargados</td>
</tr>
<tr>
<td>Almacén temporal</td>
<td>Almacenamiento de tinas mientras descargan</td>
</tr>
<tr>
<td>Buffer descongelación</td>
<td>Tinas que esperan ser descongeladas</td>
</tr>
<tr>
<td>Descongelación</td>
<td>Zona donde descongelan las tinas</td>
</tr>
<tr>
<td>Buffer descongelados</td>
<td>Zona donde colocan tinas descongeladas</td>
</tr>
<tr>
<td>Baño de bisulfito</td>
<td>Tina con solución donde se sumergen las canastas</td>
</tr>
<tr>
<td>Bascula</td>
<td>Pesar las canastas extraídas de una tina</td>
</tr>
<tr>
<td>Buffer Clasificación</td>
<td>Zona donde el camarón espera para ser clasificado</td>
</tr>
<tr>
<td>Clasificación</td>
<td>Mesas donde se clasifican los camarones</td>
</tr>
<tr>
<td>Buffer Clasificados</td>
<td>El camarón que ya ha sido clasificado espera</td>
</tr>
<tr>
<td>Pesaje</td>
<td>Inspección de la talla y el peso del colador</td>
</tr>
<tr>
<td>Buffer empaquetados</td>
<td>Mesa donde los coladores esperan a ser empacados</td>
</tr>
<tr>
<td>Mesa de empaque</td>
<td>Mesa donde el camarón se empaca en plegadizas</td>
</tr>
<tr>
<td>Buffer de plegadizas</td>
<td>Zona donde las plegadizas esperan</td>
</tr>
<tr>
<td>Mesa de organización</td>
<td>Mesa donde se organiza el camarón por talla</td>
</tr>
<tr>
<td>Congelación</td>
<td>Amerio para congelar las plegadizas</td>
</tr>
<tr>
<td>Banco</td>
<td>Mesa donde se descargan los amerio</td>
</tr>
<tr>
<td>Buffer1</td>
<td>Zona donde plegadizas esperan a ser empanadas</td>
</tr>
<tr>
<td>Buffer2</td>
<td>Zona donde plegadizas esperan a ser empanadas</td>
</tr>
</tbody>
</table>
Buffer3 Zona donde plegadizas esperan a ser empanadas
Buffer4 Zona donde plegadizas esperan a ser empanadas
Masterizado Zona donde se arma el master
Cuarto frió Zona delimitada como salida del sistema

Entidades

Contenedores
Tinas
Canastas
Plegadizas 1, 2, 3 y 4
Bandejas 1, 2, 3 y 4
Estribas
Master 1, 2, 3 y 4

Recursos

Montacargas
Cargador
Carrito de manos
Carretillero
Carrito de manos 2
Carrito de manos 3

Adicional a esto se construyen ciertos indicadores que sirven para la identificación de las características del modelo.
3. EJECUSION DE EXPERIMENTOS Y ANALISIS DE RESULTADOS

El modelo de Simulación que tenemos bajo estudio como indicamos en el primer capítulo, es un modelo Terminal, por tal motivo debemos definir ciertas características que contienen este tipo de modelo.

3.1 EJECUSION DE EXPERIMENTOS:

Estado Inicial del Modelo: el modelo de Simulación que se trabajara tiene como condiciones iniciales que los Inventarios de Productos en Proceso son cero y que el proceso de simulación se inicia con la llegada del material.

Evento que indica la finalización de la Simulación: la salida de la ultima entidad procesada en el modelo.

Número de Replicaciones: para el caso de las replicaciones, consideramos que la cantidad adecuada para realizar la Simulación es de 30 replicas, porque es un número que permite una precisión mayor al momento de arrojar los resultados.

3.2 ANALISIS DE RESULTADOS:

Ocupación de Locaciones: Al analizar la ocupación de las locaciones nos damos cuenta que la mayoría de éstas, se encuentran desocupadas en gran parte del
tiempo. Este tiempo que se mantienen desocupadas hace referencia al tiempo que demoran las entidades en congelación, durante el cual, las zonas de empaque, organizado y congelación se mantiene trabajando al máximo, mientras las zonas de recepción, baño, clasificación y pesaje permanecen desocupadas. Esto en la vida real no ocurre. Durante éste tiempo las operarias se concentran en actividades diferentes a la de clasificación de enteros.

Gráfica 3.1. Utilización de las Locaciones
También podemos afirmar que el proceso posee la capacidad suficiente para el procesamiento de las cantidades que se están introduciendo en el sistema, es decir, a excepción de la zona de descarga de los contenedores, no se presentan bloqueos en ningún otra locación del sistema. Esto puede ser visto desde diferentes puntos de vista, ya que el sistema posee diferentes zonas de almacenamiento temporal cuya capacidad es significativamente grande y puede estar ocultando problemas que se presentan.

Gráfica 3.2. Estado de Capacidad Múltiple de las Locaciones
Tal es el caso de la zona de congelación y la zona de empaque, donde éstas llegan a su máxima capacidad, debido a que la operación de clasificación y pesaje es más rápida que la de congelación, haciendo que se utilicen al máximo los almacenamientos temporales. Igual pasa con el inventario de llenado y el inventario de pesaje, éstos inventarios fueron definidos como una ruta de escape que sufren los coladores que llegan a la zona de control y pesaje, ya que cuando se llena la capacidad de ésta locación, los coladores que se encuentran aquí pasan directamente a empaque, sin llegar a la zona de control y pesaje.

Lo anterior queda corroborado con la gráfica que se muestra, donde la zona de congelación y empaque pasan casi la mitad del tiempo totalmente llenos, esto pasa por amortiguar la llegada de material a una tasa mayor que la de salida, igual pasa con los inventarios de pesaje y llenado.

Otra situación que se presenta a menor escala, pero que puede llegar a ser significativa, es un bloqueo que se presenta en la descarga de los contenedores, el tiempo que dura el bloqueo es muy pequeño, pero por tratarse de elementos externos a la organización se requiere una solución a la problemática para evitar futuros conflictos.

En cuanto al análisis de la entidades se puede apreciar que quien sufre mayor bloqueo son los master, estos es totalmente válido y al tiempo irrelevante para el
modelo. Valido por que las plegadizas salen del Amerio casi que simultáneamente, haciendo que se acumulen rápidamente muchas plegadizas que se forman como master ya que en la parte de embalaje no es capaz de hacer su tarea a un ritmo mayor que el de la salida del Amerio. También es irrelevante ya que el tiempo que demora en descargar un nuevo Amerio es suficiente para embalar todos los master, logrando así un flujo del material sin problemas. No obstante, se debe tener en cuenta que al implementar una mejora que permita la disminución del tiempo de ciclo en la salida del Amerio, pues se puede ver afectada por los tiempo de embalaje de los master produciendo nuevos bloqueos que si tomarían el carácter de significativos.

Gráfica 3.3. Estado de las Entidades

El punto clave en el análisis del comportamiento de las entidades es que corrobora lo planteado en el análisis de locaciones y es que el Amerio se convierte en el cuello de botella que mantiene a las entidades que se encuentran en congelación
y en empaque esperando por ser utilizadas (se encuentran en el buffer) o bloqueadas (no pueden seguir hasta se desocupe la estación siguiente.

Utilización de Recursos: La utilización de recursos se caracteriza por el no aprovechamiento de los mismos, en especial del montacargas que es un equipo muy costoso y que está gran parte del tiempo desocupado. El resto de recursos que aparece desocupado, realmente está siendo utilizado en otras actividades diferentes a la de recepción, clasificación y embalaje del camarón.

Gráfica 3.4. Estado de los Recursos

![Resource States](image)

Comportamiento de las variables

WIP

El comportamiento de la variable PIZAS EN PROCESO en fundamental para este estudio, ya que, como se comentó anteriormente, existe la posibilidad de que la empresa esconde sus problemas en un volumen elevado de inventario en
procesos. El estudio de estos inventarios se hará detalladamente y por medio de gráficas secuenciales que muestran el comportamiento de la variable a través del tiempo.

WIP Almacenamiento temporal

Gráfica 3.5. WIP Almacenamiento temporal

El comportamiento del inventario para el almacén temporal, consta de 5 picos, estos picos se relacionan con la llegada de los contenedores. Los contenedores son descargados en su totalidad, en esta actividad se aumenta el valor de la variable, al terminar de descargar el contenedor, las tinas pasan a la zona de
descongelación, en ésta tarea se decremena el valor de la variable regresando al punto inicial y lista para repetir el ciclo con la llegada del próximo contenedor.

WIP Clasificación

Gráfica 3.6. WIP Clasificación

El comportamiento de éste WIP es muy similar al analizado anteriormente, consta de 5 picos, los cuales se relacionan con la llegada de los contenedores. A diferencia del anterior el inventario se sostiene en un valor máximo por un lapso de tiempo, este equivale al tiempo que demoran las trabajadoras en clasificar todo un contenedor. Es decir, llegan el camarón procedente de la zona de descongelación a la zona de clasificación, aquí se incrementa el WIP de piezas en clasificación, la cantidad de camarones que deja el contenedor es clasificado, esta es la parte de la gráfica donde el inventario se sostiene en el pico, para luego salir la zona de
pesaje, aquí se disminuye el valor de la variable y está lista para iniciar nuevamente e ciclo.

WIP Pesaje

Gráfica 3.7. WIP Pesaje

El comportamiento de los niveles de inventario en cuanto a pesaje está ligado a la llegada de contenedores, al igual que en los WIP anteriores, los niveles de inventarios aumentarán según llegue material a la zona. Pero ésta variable tiene un comportamiento especial, y se refiere a que debería mostrar bloqueos, puesto que es el inventario que esta ligado a la parte de congelación y empaque, pero existe un Buffer de gran capacidad que se encarga de amortiguar todos estos coladores que salen de pesaje, haciendo que el pesaje no presente bloqueos y
dependa únicamente de las llegadas de materiales y sus tiempos de operación para el control de la talla y el peso de los coladores.

WIP Empaque

Gráfica 3.8. WIP Empaque

Al iniciar el comportamiento de la variable se ve condicionado por la llegada de los contenedores a la planta, esto se ve representado en las dos primeras columnas que se demarcan, luego esta variación se ve interrumpida y se dispara el nivel de inventarios hasta llegar a un tope donde se estabiliza, éste fenómeno se atribuye a la utilización de toda la capacidad del Amerio, haciendo que se acumulen inventarios en todas las zonas anteriores, hasta la de empaque, ya que como se mencionó anteriormente, pesaje consta de un buffer amortiguador que lo independiza. Las caídas de los niveles de inventarios que se ven en la gráfica representan los instantes en los que el Amerio se desocupa y vuelve a ser
cargado, haciendo que los inventarios fluyan y se descongestionen por un instante muy corto, ya que el Amerio volverá a ser cerrado y nuevamente se disparan los inventarios. Al final del proceso el inventario se desocupa a medida que el Amerio vaya descargando unidades.

WIP Congelación

Gráfica 3.9. WIP Congelación

Esta variable muestra la unidades que se encuentran en el Amerio, al inicio se va incrementando a medida que se van cargando y van llegando las bandejas casi en forma continua, la variable se distribuye inicialmente de forma escalonada debido a que se incrementa por lotes. Luego llega a su máxima capacidad y se va descargando e inmediatamente se empieza a recargar, al final se descarga según queden piezas en el sistema.
WIP Del Sistema

Está variable es muy especial, puesto que encierra todos aquellos parámetros que afectaron los WIP anteriores, y esto se ve reflejado en dos aspectos. El primero se da al inicio del proceso donde el WIP va aumentando y disminuyendo, pero la unidades que llegan por parte de los contenedores son muchas más que las salidas, por esto la tendencia al alza del inventario, cuando terminan de llegar los contenedores el inventario comienza a disminuir pero lo hace de manera casi que escalonada, esto hace referencia a las salidas que se dan del Amerio, se puede notar dos franja de la gráfica que es paralela al eje del tiempo, esto quiere decir que durante esos intervalos de tiempo no hubo salida de materiales, y se relaciona con el tiempo que dura el Amerio trabajando a su máxima capacidad.

Gráfica 3.10. WIP Total
TH

El comportamiento del número de piezas producidas por unidad de tiempo es una de las características más importantes de un modelo, ya que permitirá la comparación con otros modelos y determinar que tan significativas pueden ser las mejor as que se dan. De igual forma cobra importancia cuando se desea analizar el comportamiento de las operaciones dentro del sistema con excelente resultados si se realizan comparaciones objetivas.

TH Clasificación y Pesaje

Gráfica 3.11. Througput Clasificación y Pesaje

Los TH propios de este modelo son muy variables, esto quiere decir que requieren de un largo tiempo de trabajo para lograr una estabilización. También muestran
una dependencia con respecto a los arribos que se den, dado que si se aumentan los arribos, la variación del TH se prolonga. Comparando estos TH vemos que el de clasificación es mucho mayor que el de control y pesaje, esto es debido a que la primera es mucho más rápida que la segunda, además de esto, el control no se realiza a todas las piezas, por el contrario, la gran mayoría pasan directamente a empaque y solo se hace control a unas pocas, lo que hace mucho menor el valor de la variable con respecto al de clasificación.

TH Congelación y total del sistema

La variación del TH total del sistema está muy ligada a la variación de TH de congelación, es decir, que se podría afirmar que las salidas del proceso tiene como dependencia la operación de congelación. Analizando la gráfica se nota que el TH de congelación varía de forma escalonada, mientras el TH total varía intentando asemejar el comportamiento del primero, esto se explica porque las salidas que se dan en el proceso de congelación son en lotes, mientras las salidas totales del sistema son en master, haciendo que el último tenga una mayor variación.
El tiempo de ciclo hace referencia al tiempo que demora cada entidad dentro del sistema. Esta variable puede mostrar que tan congestionado está el sistema y qué tendencia marca. Esta muy ligado al inventario de productos en proceso como caracterizador del sistema en cuanto a demoras y congestión del mismo, haciendo notar fácilmente si un sistema se encuentra sobresaturado de material que no puede procesar.

Gráfica 3.12. Throughput Clasificación y Pesaje

TC

Tiempo de Ciclo

El tiempo de ciclo hace referencia a tiempos que demoran cada entidad dentro del sistema. Esta variable puede mostrar qué tan congestionado está el sistema y qué tendencia marca. Esta muy ligado al inventario de productos en proceso como caracterizador del sistema en cuanto a demoras y congestión mismo, haciendo notar fácilmente si un sistema se encuentra sobresaturado de material que no puede procesar.
El tiempo de ciclo para este proceso muestra una tendencia clara al aumento, a mediad que transcurre el tiempo de operación. El tiempo de ciclo se ve afectado por los grandes inventarios que posee el sistema productivo, haciendo que el material se estanque en un buffer y congestione el sistema, es el caso del Buffer amortiguador al final del pesaje, donde el sistema debe bloquearse, pero sigue enviando material que se almacena temporalmente allí.

Gráfica 3.13. Tiempo de Ciclo
4. IDENTIFICACION DE LA CAUSA RAIZ Y PROPUESTAS DE MEJORAS

Para encontrar las verdaderas causas que influyen a que se presenten problemas en el sistema productivo de C.I. Antillana S.A., aplicaremos la técnica de los cinco porque´s de Kauro Ishikawa. Para encontrar dichas causas, determinamos los procesos que presentan altos índices de trabajo en proceso delante de ellos y por eso consideramos que podrían estar ocultando algo que afecta el aprovechamiento de estos al máximo. Los procesos que seleccionamos son el control y pesaje, y la congelación.

Control y Pesaje

Para esta operación, identificamos que existen altos niveles de inventarios para ser inspeccionados.

¿Por qué existen altos niveles de inventario antes de ser inspeccionados?

Porque la tasa de producción de la operación anterior (clasificación) es mucho más alta que la tasa de inspección de control y pesaje.

¿Por qué la tasa de inspección de control y pesaje es más baja que la de producción de la operación anterior?
Porque la inspección es detallada tanto de las especificaciones de los camarones como del peso de la unidad básica de salida (coladores).

¿Por qué la inspección es detallada?
Porque se pueden cometer errores en la clasificación y llenado de coladores debido a que no hay un estándar definido general para todos los insumos (camarones) que llegan a la planta para ser procesados. A esto se le suma que la clasificación es cualitativa (grande, mediano, pequeño) y que todo el proceso es realizado manualmente donde se debe tener en cuenta que el ser humano está sujeto a cometer errores en determinados momentos.

Congelación
En esta operación, también identificamos que existe altos niveles de inventarios en la zona de almacenamiento provisional antes de ser almacenados en el Amerio.

¿Por qué existen altos niveles de inventario antes de ser almacenados en el Amerio?
Porque la capacidad del Amerio es insuficiente para guardar todo lo que llega a esta zona.
¿Por qué la capacidad del Amerio es insuficiente?
Porque el tiempo de congelación es largo y el Amerio está diseñado para soportar solo esa capacidad.

¿Por qué el tiempo de congelación es largo?
Porque así lo requiere el proceso.

Causas Raíces

Problema 1
La Causa Raíz para el primer problema es que no hay un estándar para la clasificación del camarón. El estándar está relacionado con una medida que se debe aplicar todos los días, con los diferentes tipos de camarón que lleguen a la planta para ser clasificados cualquier día.

Para dar solución a esta problemática recomendamos un mejoramiento de la calidad de los productos evitando los defectos (Poka-Yoke). Actualmente se realiza una técnicas de inspección en el proceso de control y pesaje:

Inspección Informativa: Consiste en separar los productos defectuosos de los buenos después del proceso, esto se da cuando se inspeccionan los coladores y
cómo no cumplen con las características de calidad requeridas se manda a reprocesamiento, pero también se investiga la causa de los defectos, buscando disminuir la tasa de productos no conformes, esto se puede hacer ya que cada colador consta de una etiqueta con el nombre de la clasificadora, a la cual si genera un colador defectuoso ya sea por tamaño o por peso, se indica cual es el error y la clasificadora corrige.

La propuesta que hacemos es una nueva técnica de inspección:

Inspección en la fuente: Un defecto es resultado, usualmente causado por un simple error. A través de la inspección 100% en la fuente, el error puede corregirse antes que se transforme en defecto. Puede entonces lograrse el “defecto = 0”

Para lograr esto, se debe basar en 3 componentes que conducen a la eliminación de defectos:

1. Inspección en la fuente: Chequeo de lo factores que causan errores, no de los defectos resultantes
2. Inspección al 100%: Uso de baratos mecanismos (Poka – Yoke) a prueba de errores, para inspeccionar automáticamente defectos o condiciones operativas defectuosas.
3. Acción Inmediata: Las operaciones se paran inmediatamente cuando se comete un error y no se reanuda hasta que se corrija.

Para lograr esto se propone la implementación de un aparato que no permita la introducción de una camarón en un colador que no corresponda a su talla. Este dispositivo está solamente planteado como modelo, las dimensiones y en especial la de los orificios deben ser definidas de acuerdo a las necesidades de los interesados.

El dispositivo será totalmente elaborado en plástico y consta de 2 placas, una placa totalmente horizontal con un orificio, la segunda placa inclinada con otro orificio de tamaño menor al de la primera placa.

¿Cómo funcionaría el dispositivo?

Supongamos que existen 4 tallas, talla de 18cm, de 15cm y de 13cm, supongamos que la clasificadora tiene en sus manos un camarón y ella lo clasifica como de talla 15, al intentar introducirlo por el dispositivo va a encontrar un primer orificio, si el camarón no cave por ese orificio quiere decir que es de una talla mayor, es decir 18, si el camarón pasa deja dos alternativas, que sea de talla 15 o de talla 13, ya que ambos pueden pasar por el orificio.
Al pasar el orificio el camarón cae y rueda por la placa inclinada, con dirección al segundo orificio, éste orificio es tamaño menor al primero, i el camarón pasa por el orificio quiere decir que era talla 13, y cae a la bandeja de reproceso, si el camarón no cabe por el segundo orificio y sigue rodando, es por que era la talla que se había catalogado al principio.

Esto en el sistema productivo eliminaría la inspección que se realiza a los coladores respecto a la talla, pero también aumentaría el tiempo de clasificación, al igual que disminuiría las cantidades a reprocesar, por todas estas cantidad de variables se hace imposible incluirlo en el modelo de simulación y determinar sus beneficios, por tal motivo se recomienda a los interesados realizar pruebas pilotos donde primeramente se logre identificar las dimensiones que permitan al dispositivo cumplir a cabalidad las funciones para la que fue diseñado y una segunda prueba piloto para determinar los tiempos que le toma a las operarias la clasificación.

Problema 2

La causa raíz del segundo problema es que existe una restricción de capacidad. Por tal motivo aquí se produce un cuello de botella que hace que el sistema se bloquee y no pueda evacuar as rápido las plegadizas para ser masterizadas.
Este problema se puede solucionar tratando de disminuir los tiempos de alistamiento. Estos tiempos de alistamiento se pueden realizar, tratando de armar como mínimo el número de bandejas que tiene capacidad un Amerio para tenerlas listas al momento de que este termine de congelar el turno anterior de estas. Para eso se deben de tener como mínimo 75 bandejas adicionales para realizar el alistamiento. También se debe aumentar la cantidad de operarios en la sección de organizado con el fin de abastecer al cuello de botella en el menor tiempo posible.

A la vez se puede aprovechar el tiempo que se utiliza para descargar el Amerio cargándolo con las bandejas que se van a congelar. Esto se puede hacer porque existe una puerta de carga y una puerta de descarga., que se pueden trabajar al mismo tiempo, pero tratando de no confundir las bandejas que se están introduciendo.

Con esta solución se aprovecharía más el cuello de botella y el tiempo de ciclo del producto disminuiría considerablemente porque se reduce las esperas en esta sección y por ende la esperas en las secciones anteriores.

Pero esta solución solo se debe tener en cuenta si se quiere mantener la misma cantidad de producción y se desea ser mas productivo, pero si se quiere ampliar la capacidad de producción se debe construir otro Amerio o ampliar la capacidad de los ya existentes.
5. CONCLUSIONES

El recurso humano es una pieza fundamental en el proceso productivo de la empresa C.I. Antillana S.A. Este se encuentra muy capacitado para lograr productos de excelente calidad y cumplimiento de estándares internacionales. C.I. Antillana S.A. debe apoyar sus estrategias en sus operadores y cualquier implementación o propuesta de mejora que desee hacerse debe evaluar el impacto que tendría sobre el recurso humano y la competitividad de la empresa.

Al estudiar el sistema productivo se nota que las operaciones no están balanceadas, es decir, a pesar de que conocen los cuellos de botella, no se generan implementaciones que minimice los impactos de estos. Mucho menos se preocupan por mantener un orden o balanceo en la línea de producción con respecto a las entidades que se van generando en cada actividad, haciendo que se generen gran cantidad de almacenamientos temporales y embotellamientos significativos de materiales. Esto es debido a que la empresa posee otras prioridades, por ejemplo, para la empresa es más importante desocupar rápidamente a las organizadoras para que pasen a realizar otras labores que dejar 150 plegadizas en un almacenamiento temporal en la puerta del amerio.

En el estudio del tiempo de ciclo identificamos que este se aumenta en la sección de empaque y congelación, debido a que estos en un momento dado tiene un alto
valor de WIP, producido por estancamiento de materiales en almacenes temporales que hay entre las locaciones, por eso los productos esperan mucho tiempo para ser atendidos y el tiempo que pasan dentro del sistema es mucho mayor. Generalmente el aumento del tiempo de ciclo se produce cuando estas locaciones no tienen la capacidad suficiente de procesar las entidades en un tiempo determinado.

También encontramos que para este modelo la variabilidad es baja por que las actividades de los procesos son tan repetitivas que los tiempos de salida tienden a ser aproximadamente iguales para el modelo de simulación como para las réplicas. Cabe anotar que esta baja variabilidad se presenta cuando el sistema tiende a estabilizarse, ya que al inicio el sistema es inestable generando variabilidad alta.

Otro aspecto que se identificó es referente a las tasas de producción por unidad de tiempo en el modelo, éstas no logran estabilizarse durante el tiempo que dura la corrida. Para la tasa de producción general del sistema de concluyó que está dependiendo directamente del cuello de botella, donde las salidas de este varían con valores muy grandes, haciendo al indicador muy inestable. Pero no solamente afecta esto, un factor que también afecta otros aspectos en el sistema son las llegadas, éstas influyen en la tasa de producción de las operaciones que se
encuentran antes de la zona de empaque, las cuales se encuentran aisladas del cuello de botella por un Buffer de alta capacidad.

Se logró determinar que la restricción del sistema o el llamado cuello de botella es la sección de congelación. En ésta parte las plegadizas esperan altos periodos de tiempo para poder ser guardadas en los Amerios, ya que estos no tienen la capacidad suficiente para poder congelar más plegadizas en un menor tiempo posible.

Cabe anotar que en la sección de control y pesaje se presenta un embotellamiento debido a que las clasificadoras procesan más cantidad de camarón del que las inspectoras pueden revisar. La presente anomalía la solucionan pasando coladores sin inspeccionar, arriesgándose a que en ellos existan errores que afecten la calidad del producto que están suministrando a los exigentes mercados a los cuales abastece la empresa.

Por ultimo, se logró identificar que a pesar de disminuir los tiempos de inspección, aun se seguirá presentando un bloqueo en la zona de pesaje, debido a que el peso es un factor muy delicado que requiere de pesos electrónicos, esta actividad de pesaje no puede hacerse 100%, por esto se propone la creación de un sistema de muestreo bien estructurado por el cual se controle el peso de los coladores. Esta implementación debe ir acompañada de guías que se instalen en los
coladores donde se le indique a las clasificadoras hasta donde debe llenarse el colador para obtener el peso deseado.
BIBLIOGRAFÍA

ANEXOS
2. VALIDACIÓN DE LOS DATOS Y ANÁLISIS ESTADÍSTICO A TRAVÉS DE STAT::FIT

<table>
<thead>
<tr>
<th>Observación</th>
<th>Datos</th>
<th>Observación</th>
<th>Datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23.07</td>
<td>40</td>
<td>21.2</td>
</tr>
<tr>
<td>2</td>
<td>26.08</td>
<td>41</td>
<td>24.6</td>
</tr>
<tr>
<td>3</td>
<td>24.28</td>
<td>42</td>
<td>17.93</td>
</tr>
<tr>
<td>4</td>
<td>25.02</td>
<td>43</td>
<td>24.77</td>
</tr>
<tr>
<td>5</td>
<td>30.82</td>
<td>44</td>
<td>22.73</td>
</tr>
<tr>
<td>6</td>
<td>39.21</td>
<td>45</td>
<td>21.85</td>
</tr>
<tr>
<td>7</td>
<td>20.79</td>
<td>46</td>
<td>25.4</td>
</tr>
<tr>
<td>8</td>
<td>18.32</td>
<td>47</td>
<td>39.84</td>
</tr>
<tr>
<td>9</td>
<td>22.60</td>
<td>48</td>
<td>23.71</td>
</tr>
<tr>
<td>10</td>
<td>22.26</td>
<td>49</td>
<td>35.44</td>
</tr>
<tr>
<td>11</td>
<td>27.03</td>
<td>50</td>
<td>39.67</td>
</tr>
<tr>
<td>12</td>
<td>24.78</td>
<td>51</td>
<td>23.12</td>
</tr>
<tr>
<td>13</td>
<td>22.69</td>
<td>52</td>
<td>22.41</td>
</tr>
<tr>
<td>14</td>
<td>18.01</td>
<td>53</td>
<td>38.03</td>
</tr>
<tr>
<td>15</td>
<td>24.63</td>
<td>54</td>
<td>22.71</td>
</tr>
<tr>
<td>16</td>
<td>30.53</td>
<td>55</td>
<td>28.24</td>
</tr>
<tr>
<td>17</td>
<td>23.84</td>
<td>56</td>
<td>38.69</td>
</tr>
<tr>
<td>18</td>
<td>24.58</td>
<td>57</td>
<td>27.97</td>
</tr>
<tr>
<td>19</td>
<td>27.68</td>
<td>58</td>
<td>21.37</td>
</tr>
<tr>
<td>20</td>
<td>22.74</td>
<td>59</td>
<td>31.93</td>
</tr>
<tr>
<td>21</td>
<td>24.25</td>
<td>60</td>
<td>21.18</td>
</tr>
<tr>
<td>22</td>
<td>23.39</td>
<td>61</td>
<td>36.12</td>
</tr>
<tr>
<td>23</td>
<td>23.09</td>
<td>62</td>
<td>17.96</td>
</tr>
<tr>
<td>24</td>
<td>27.41</td>
<td>63</td>
<td>19.88</td>
</tr>
<tr>
<td>25</td>
<td>23.45</td>
<td>64</td>
<td>24.12</td>
</tr>
<tr>
<td>26</td>
<td>24.11</td>
<td>65</td>
<td>24.15</td>
</tr>
<tr>
<td>27</td>
<td>23.14</td>
<td>66</td>
<td>29.51</td>
</tr>
<tr>
<td>28</td>
<td>20.07</td>
<td>67</td>
<td>37.09</td>
</tr>
<tr>
<td>29</td>
<td>24.15</td>
<td>68</td>
<td>35.77</td>
</tr>
<tr>
<td>30</td>
<td>37.41</td>
<td>69</td>
<td>36.05</td>
</tr>
<tr>
<td>31</td>
<td>21.65</td>
<td>70</td>
<td>38.34</td>
</tr>
<tr>
<td>32</td>
<td>25.49</td>
<td>71</td>
<td>33.38</td>
</tr>
<tr>
<td>33</td>
<td>26.01</td>
<td>72</td>
<td>34.58</td>
</tr>
<tr>
<td>34</td>
<td>24.36</td>
<td>73</td>
<td>29.62</td>
</tr>
<tr>
<td>35</td>
<td>23.05</td>
<td>74</td>
<td>25.92</td>
</tr>
<tr>
<td>36</td>
<td>21.22</td>
<td>75</td>
<td>32.43</td>
</tr>
<tr>
<td>37</td>
<td>26.06</td>
<td>76</td>
<td>31.72</td>
</tr>
<tr>
<td>38</td>
<td>27.79</td>
<td>77</td>
<td>30.35</td>
</tr>
<tr>
<td>39</td>
<td>21.77</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Análisis Estadístico

descriptive statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>data points</td>
<td>77</td>
</tr>
<tr>
<td>minimum</td>
<td>17.93</td>
</tr>
<tr>
<td>maximum</td>
<td>39.84</td>
</tr>
<tr>
<td>mean</td>
<td>26.7045</td>
</tr>
<tr>
<td>median</td>
<td>24.6</td>
</tr>
<tr>
<td>mode</td>
<td>23.665</td>
</tr>
<tr>
<td>standard deviation</td>
<td>5.89153</td>
</tr>
<tr>
<td>variance</td>
<td>34.7101</td>
</tr>
<tr>
<td>coefficient of variation</td>
<td>22.0619</td>
</tr>
<tr>
<td>skewness</td>
<td>0.798327</td>
</tr>
<tr>
<td>kurtosis</td>
<td>-0.447634</td>
</tr>
</tbody>
</table>

Encontramos que la media para este conjunto de datos es de 26.70 segundos, la moda es de 23.665 segundos y tiene una desviación estándar de 5.89 segundos. Podemos deducir que esta actividad denominada **Baño con Bisulfito** tiene una gran variación, ya que es realizada por los operarios y estos **estiman** el tiempo en que deben permanecer las canastillas en la tina. A la vez ellos realizan otras actividades que afectan esta actividad.
Diagrama de Dispersión

En el diagrama de dispersión, encontramos que los datos son dispersos, pero gran parte de ellos se concentran entre 20 y 30 segundos, que donde se encuentra la media y la moda. Aquí determinamos que los datos son independientes unos con otros y la variabilidad de estos está siendo afectada por factores externos a la actividad propia de la operación.
Ajuste a Curva de Distribución de Probabilidad

Auto::Fit Distributions

<table>
<thead>
<tr>
<th>distribution</th>
<th>rank</th>
<th>acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log-Logistic(17, 2.64, 9.17)</td>
<td>100</td>
<td>accept</td>
</tr>
<tr>
<td>Pearson 6(17, 29.7, 3.2, 10.4)</td>
<td>92.6</td>
<td>accept</td>
</tr>
<tr>
<td>Gamma(17, 2.57, 3.79)</td>
<td>51.5</td>
<td>accept</td>
</tr>
<tr>
<td>Lognormal(17, 2.07, 0.704)</td>
<td>48.6</td>
<td>accept</td>
</tr>
<tr>
<td>Erlang(17, 3, 3.23)</td>
<td>22.1</td>
<td>accept</td>
</tr>
<tr>
<td>Weibull(17, 1.73, 10.9)</td>
<td>16.9</td>
<td>accept</td>
</tr>
<tr>
<td>Inverse Gaussian(17, 14.2, 9.7)</td>
<td>3.39</td>
<td>accept</td>
</tr>
<tr>
<td>Triangular(17, 42.3, 22.6)</td>
<td>0.595</td>
<td>reject</td>
</tr>
<tr>
<td>Pearson 5(17, 1.75, 10.1)</td>
<td>0.443</td>
<td>reject</td>
</tr>
<tr>
<td>Beta(17, 39.8, 1.24, 1.55)</td>
<td>0.125</td>
<td>reject</td>
</tr>
<tr>
<td>Pareto(17, 2.33)</td>
<td>0.000</td>
<td>reject</td>
</tr>
<tr>
<td>Exponential(17, 9.7)</td>
<td>0.000</td>
<td>reject</td>
</tr>
<tr>
<td>Uniform(17, 30.9)</td>
<td>0.000</td>
<td>reject</td>
</tr>
</tbody>
</table>

Al realizar el Auto::Fit, realizamos una comparación entre las diferentes distribuciones que generó el Software y solo 7 de ellas son adecuadas para el conjunto de datos que tenemos.

Pero para elegir una de ellas, comparamos el porcentaje o ranking, con el cual se mide cuál de dichas curvas contiene más datos bajo ella. Por tal motivo elegimos la distribución de probabilidad LOG-LOGISTIC.
Nota:

De igual forma se validaron el resto de datos para corroborar que estos puedan servir de información para el modelo de Simulación que se desarrolló.